Mitochondrial reactive oxygen species inactivate neuronal nicotinic acetylcholine receptors and induce long-term depression of fast nicotinic synaptic transmission.

نویسندگان

  • Verónica A Campanucci
  • Arjun Krishnaswamy
  • Ellis Cooper
چکیده

Neuronal nicotinic acetylcholine receptors (nAChRs), ligand-gated ion channels implicated in a variety of cognitive, motor, and sensory behaviours, are targeted to compartments rich in mitochondria, particularly postsynaptic domains and presynaptic terminals, exposing these receptors to reactive oxygen species (ROS) generated by oxidative phosphorylation. In addition, these receptors can become exposed to ROS during the progression of certain neurodegenerative diseases. Because ROS are known to modify several membrane proteins, including some types of ion channels, it raises the question of whether elevations in cytosolic ROS alter the function of nAChRs. To address this, we elevated ROS in cultured sympathetic neurons, directly by perfusing neurons intracellularly with ROS, indirectly by blocking the mitochondrial electron transport chain, or noninvasively by transient NGF removal; we then simultaneously measured changes in cytosolic ROS levels and whole-cell ACh-evoked currents. In addition, we elevated cytosolic ROS in postganglionic neurons in intact ganglia and measured changes in nerve-evoked EPSPs. Our experiments indicate that mild elevations in cytosolic ROS, including that produced by transient interruption of NGF signaling, induce a use-dependent, long-lasting rundown of ACh-evoked currents on cultured sympathetic neurons and a long-lasting depression of fast nerve-evoked EPSPs. We show that these effects of cytosolic ROS are specific to nAChRs on neurons and do not cause rundown of ACh-evoked currents on muscle. Our results demonstrate that elevations in cytosolic ROS inactivate neuronal nAChRs in a use-dependent manner and suggest that mild oxidative stress impairs mechanisms mediated by cholinergic nicotinic signaling at neuronal-neuronal synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotinic acetylcholine receptors in mitochondria: subunit composition, function and signaling

Nicotinic acetylcholine receptors (nAChRs) of neuronal type not only mediate the fast synaptic transmission, but also modulate proliferation, cytokine or transmitter release and survival in both excitable and non-excitable cells. Recent studies clearly indicate that these receptors can stimulate intracellular signaling in ion-independent manner. Classically, the nAChRs were attributed exclusive...

متن کامل

Modulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices

Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...

متن کامل

Nonsynaptic chemical transmission through nicotinic acetylcholine receptors.

This review attempts to organize the different aspects of nicotinic transmission in the context of nonsynaptic interactions. Nicotinic acetylcholine receptors (nAChRs) dominantly operate in the nonsynaptic mode in the central nervous system despite their ligand-gated ion-channel nature, which would otherwise be better suited for fast synaptic transmission. This fast form of nonsynaptic transmis...

متن کامل

Nicotinic acetylcholine receptors interact with dopamine in induction of striatal long-term depression.

The dorsal striatum participates in motor function and stimulus-response or "habit" learning. Acetylcholine (ACh) is a prominent neurotransmitter in the striatum and exerts part of its actions through nicotinic cholinergic receptors. Activation of these receptors has been associated with the enhancement of learning and certainly is instrumental in habitual use of nicotine. Nicotinic receptors h...

متن کامل

Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission.

Synaptic modulation and long-term synaptic changes are thought to be the cellular correlates for learning and memory (Madison et al., 1991; Aiba et al., 1994, Goda and Stevens, 1996). The hippocampus is a center for learning and memory that receives abundant cholinergic innervation and has a high density of nicotinic acetylcholine receptors (nAChRs) (Wada et al., 1989; Woolf, 1991). We report t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 7  شماره 

صفحات  -

تاریخ انتشار 2008